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This paper investigates linear-elastic response of cracked FG layers subjected to 

thermomechanical loading. Classical coupled thermoelastic equations are used in 

the calculations. The coupled dynamical system of equations obtained from the 

extended finite element discretization is solved by the Newmark method in the time 

domain. Micromechanical models for conventional composites are used to estimate 

properties of FG layer. The interaction integral is then employed to calculate the 

stress intensity factors at each time step. Also crack propagation phenomenon 

under thermomechanical shocks is investigated in this paper. We have used 

MATLAB software to implement the algorithm and related code of problem.  
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1. Introduction 
Functionally graded materials (FGMs) are a new class of composite materials characterized by 

the gradual variation in microstructure and material properties. FGMs were initially designed as 

thermal barrier materials for aerospace structural applications and fusion reactors. They are now 

developed for general use as structural components in extremely high-temperature environments. 

FGM components are generally constructed to sustain severe temperature gradients. Ceramic 

materials, because of their excellent properties at high temperatures and their superior wear and 

corrosion resistance, use widely in structure of FGMs. One major limitation of ceramics is their 

intrinsic brittleness that can result in fracture under severe thermal shocks. Therefore, the fracture 

analyses of FGMs under thermal shocks are important to their permanence in engineering 

applications. 

To adapt the standard finite element method to fracture computations, the extended finite 

element method (XFEM) has been developed, which completely avoids remeshing [1, 2, 3]. This 

XFEM is based on the partition of unity [4]. In this method, a discontinuous enrichment function is 

used along the crack path in order to describe a discontinuous displacement [2]. Belytschko et al. 
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[5] developed a method for dynamic crack growth with loss of hyperbolicity as a propagation 

criterion. Rozycki et al. [6] studied the critical time step within XFEM in explicit dynamic crack 

propagation with enrichment kept active during the propagation. Linder and Armero [7] have 

treated dynamic crack propagation with embedded discontinuity elements. Menouillard et al. [8] 

presented a new method for crack tip enrichment based on letting the enrichment be a function of 

time.  

The response of functionally graded cracked layers under thermomechanical shocks is found in 

just a few articles. Noda [9] and Fujimoto and Noda [10, 11] have done a series of works on using 

the finite element method to obtain the crack SIFs under thermal loading conditions in 

homogeneous and functionally graded materials. They considered the heat conduction equation 

where thermo-coupling has been ignored. Jin and Paulino [12] studied an edge crack in a strip of a 

functionally graded material under transient thermal loading conditions. They employed a multi-

layered material model to obtain the temperature field. Without considering the thermoelastic 

coupling effect, transient elastodynamic crack analyses in functionally graded materials have been 

presented previously by many researchers in literature using various methods, see e.g. reference 

[13, 14] for more references cited therein. Hosseini–Tehrani and Eslami [15] and Hosseini-Tehrani 

et al. [16] employed the boundary element method to investigate the effect of the coupling and 

inertia terms in dynamical thermal loading problems. Duflot [17] investigated the static case of 

thermoelastic fracture by XFEM where both 2D and 3D problems with different crack face thermal 

boundary conditions are included. KC and Kim [18] using finite element method evaluated the non-

singular T-stress and mixed-mode stress intensity factors in FGMs under steady-state thermal loads 

via interaction integral. Zamani and Eslami [19] employed the finite element method to obtain the 

SIF for a functionally graded cracked body under coupled classical thermoelastic assumption. They 

assumed that the crack remain stationary within simulation. Also, the XFEM formulation was 

implemented by Zamani and Eslami [20] to model the effect of the mechanical and thermal shocks 

on a cracked body. The crack was assumed to be stationary. Feng and Jin [21] examined the 

fracture behavior of a FGM plate containing parallel surface cracks with alternating lengths 

subjected to a thermal shock. Ekhlakov et al. [22] developed a boundary-domain element method 

(BDEM) for a transient thermoelastic crack analysis in isotropic, continuously non-homogeneous 

and linear elastic FGMs. They considered a stationary edge crack in a two dimensional finite 

domain subjected to a thermal shock and computed stress intensity factors.  

The study of crack propagation phenomena in a functionally graded cracked layer under 

thermomechanical shocks and using the coupled thermoelastic equations is not found in previous 

articles. In present study, XFEM formulation is implemented to model the effect of thermal shocks 

on a functionally graded cracked layer under coupled classical thermoelastic assumption. The 
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Newmark time integration scheme is used to solve the dynamical system of matrix equations 

obtained from the spatial discretization of initial coupled equations. The most general form of 

interaction integral for FGMs is extracted base on the non-equilibrium formulation and also 

dynamical stress intensity factors are computed in each time step. A MATLAB code is developed to 

implement the different stages of computation from mesh generation to calculation of SIFs and 

crack propagation simulation. Some numerical examples are implemented to investigate the validity 

and accuracy of the written computer program. The effects of volume fraction profiles of FGMs on 

SIFs are investigated in this paper. The crack is assumed to be moving under thermal and 

mechanical shocks. Also, Crack propagation phenomenon is considered which seems not to be 

reported with this condition in previous works. 

 

2. General problem formulation 
2.1. Space discretization 

The general governing equations of the classical coupled thermoelasticity are the equation of 

motion (Eq. (2-1)) and the first law of thermodynamics (Eq. (2-2)), as [23], 

(2-1) ���,� + �� = ��� �
(2-2) ��,� + ����� + ���1 + � ��� ������ = �

If the temperature change, �, is small compared to the reference temperature ��, Eq. (2-2) may 

be approximately written in the simpler form [23]. 

(2-3) ��,� + ����� + ������� = �
The system of coupled equations (2-1) and (2-2) does not have a general analytical solution. The 

extended finite element model of the problem is obtained by discretizing the solution domain into a 

number of arbitrary elements. In the XFEM formulation, a standard local displacement 

approximation around the crack is enriched with discontinuous jump function across the crack faces 

and the asymptotic crack tip displacement field around the crack tip [1]. The same procedure is used 

for the temperature enrichment [17]. The formulation of the XFEM for displacement components 

can be written as [20], 

(2-4) 

���, �, �� = � ����, �������
��� �����

+ � ����, ������, �� − ����, ���������
�∈���

+ � � ����, �������, �� − �����, ����������
�∈�����

Where ��� is the set of nodes that the discontinuity has in its influence domain, while ���� is the 

set of nodes inside a predefined area around the crack tip (see fig. 1). Here, ���, �� is Heaviside 

enrichment function and �� represents crack tip enrichment functions [24]. Also  
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����� = �a�
����, a�

� �����, ����� = �b�
����, b�

� ����� and ������ = �c��
� ���, c��

� ����� are vectors of 

nodal unknowns.  

 

Fig. 1. Selection of enriched nodes for edge crack. Circled nodes are enriched by the discontinuity function whereas the 

squared nodes are enriched by the crack tip enrichment functions. 

 

In this study the crack faces are assumed to be adiabatic so the temperature is discontinuous 

along the crack faces and the heat flux is singular at the crack tip. Thus, the temperature field is 

discretized similar to the displacement field, but only with the one crack tip enrichment function 

[20].  

(2-5) 

���, �, �� = � ����, ��a�
� ���

��� �����
+ � ����, ������, �� − ����, ����b�

����
�∈���

+ � ���x, y����.� ����� 2� � − ��.� ������ 2� ��c�
����

�∈����

Where � and � are the usual crack-tip polar coordinates. Also a�
� ���, b�

���� and c�
���� are nodal 

unknowns corresponding to temperature field. Now, the base element (e) with n nodal points is 

considered and the displacement components and temperature change in the element (e) are 

approximated by compact forms as follows: 

(2-6) ����, �, �� = ����, ��a�
���� + Φ���, ��b�

���� + Ψ����, ��c��
� ���

(2-7) ����, �, �� = ����, ��a�
� ��� + Φ���, ��b�

���� + Ψ����, ��c��
� ���

(2-8) ����, �, �� = ����, ��a�
���� + Φ���, ��b�

���� + Ψ����, ��c��
� ���

ℎ = 1,2, … , �� � = 1,2,3,4
Where �� is number of nodes in element (e) and c��

� ��� is components of vector ����� defined by  

(2-9) ����� = �c��
� , 0,0,0, c��

� , 0,0,0, c��
� , 0,0,0, c��

� , 0,0,0, �

Also Φ and Ψ exhibit the enriched parts of both displacement and temperature fields. They can be 

related to face and tip enrichment respectively.  

(2-10) Φ���, �� = ����, ������, �� − ����, ����

Crack path 
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(2-11)

Ψ���, �� = ����, �����.� ����� 2� � − ��
�.� ������ 2� � , ��.� ����� 2� � − ��

�.� ������ 2� �,
��.� ����������� 2� � − ��

�.� ������������� 2� �,
��.� ����������� 2� � − ��

�.� �������cos��� 2� ��

Applying the weighted residual integral to the equation of motion and the energy equation with 

respect to the weighting functions ����, ��, the formal Galerkin approximations reduce to 

(2-12) � ����,� + �� − ��� ������
����

= 0 � = 1,2, … , ��

(2-13) � ���,� + ����� + ����� �,� − ������
����

= 0 � = 1,2, … , ��

Where �� is the number of shape function of element (e) and �� is component of vector �.

(2-14) � = ���, ��, ��, ��, Φ�, Φ�, Φ�, Φ�, Ψ��, Ψ��, Ψ��, Ψ�� � � = 1,2,3,4

Hooke’s law correlates the stress tensor to the displacement components and temperature 

change � via Eq. (2-15). 

(2-15) ��� = ����,� + ��,�� + ����,� − ������

Where � = ��3� + 2�� and � = �� − ���. According to Fourier’s law of heat conduction we have,  

(2-16) �� = −����,�

Where ��� is the coefficient of thermal conduction for a general anisotropic material. By 

substituting Eqs. (2-6) to (2-8), (2-15) and (2-16) into Eqs. (2-12) and (2-13) and using the Gauss 

divergence theorem, after some manipulations, the following equations for two dimensional 

coupled thermoelasticity will be obtained. 

(2-17)

�� �������
����

� a� �� + �� ���Φ���
����

� b� �� + �� ���Ψ����
����

� c���
�

+ �� ��� + 2����,���,� + ���,���,��
����

��� a�
�

+ �� ��� + 2����,�Φ�,� + ���,�Φ�,��
����

��� b�
�

+ �� ��� + 2����,�Ψ��,� + ���,�Ψ��,��
����

��� c��
�

+ �� ����,���,� + ���,���,����
����

� a�
� + �� ����,�Φ�,� + ���,�Φ�,����

����
� b�

�

+ �� ����,�Ψ��,� + ���,�Ψ��,����
����

� c��
�
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− � ���,����a�
� + Φ�b�

� + Ψ��c��
� ���

����
= � ������

����
+ � ��

�����
����

(2-18)

�� �������
����

� a� �� + �� ���Φ���
����

� b� �� + �� ���Ψ����
����

� c���
�

+ �� ����,���,� + ���,���,����
����

� a�
� + �� ����,�Φ�,� + ���,�Φ�,����

����
� b�

�

+ �� ����,�Ψ��,� + ���,�Ψ,����
����

� c��
�

+ �� ����,���,� + �� + 2����,���,����
����

� a�
�

+ �� ����,�Φ�,� + �� + 2����,�Φ�,����
����

� b�
�

+ �� ����,�Ψ��,� + �� + 2����,�Ψ��,����
����

� c��
�

− � ���,����a�
� + Φ�b�

� + Ψ��c��
� ���

����
= � ������

����
+ � ��

�����
����

(2-19)

�� ���������
����

� a� �� + �� �����Φ���
����

� b� �� + �� �����Ψ����
����

� c���
�

+ �� �����,���,� + ����,���,����
����

� a�
� + �� �����,�Φ�,� + ����,�Φ�,����

����
� b�

�

+ �� �����,�Ψ��,� + ����,�Ψ��,����
����

� c��
� + �� �������,���

����
� a� ��

+ �� �����Φ�,���
����

� b� �� + �� �����Ψ��,���
����

� c���
� + �� �������,���

����
� a� ��

+ �� �����Φ�,���
����

� b� �� + �� �����Ψ��,���
����

� c���
�

= � �����
����

– � ����������
����

− � ����������
����

� = 1,2, . . . , �� ℎ = 1,2, … , �� � = 1,2,3,4
Where �� = 4 for a four node element. Equations (2-17) to (2-19) are assembled into a matrix form 

resulting in the general finite element coupled equation given by Eq. (2-20). 

(2-20) ����∆� � + ����∆� � + ����∆� = ����
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Where ���, ��� and ��� are mass, damping, and stiffness matrices, respectively. Generally, for base 

element (e) which is enriched with both Heaviside and crack tip enrichment functions, these 

matrices can be written as follows: 

(2-21) ������ = � ���� �0���×��
�0���×�� �0���×��

�

(2-22) ������ = ��0���×�� �0���×��
���� ���� �

(2-23) ������ = � ���� ����
�0���×�� �����

���� is the force vector defined by: 

(2-24) ������ =

�
�
�
�
� � ����������

����
+ � ����������

����

� ��������
����

− � ����� + ������������
���� �

�
�
�
�

And �∆� is the nodal displacements and temperature changes vector, 

(2-25) �∆���� = �a�
�, a�

� , b�
�, b�

�, c��
� , c��

� , a�
�, b�

�, c��
� ��, ℎ, � = 1, … ,4

Also �∆� � and �∆� � are the first and second time derivative of �∆�, respectively. Components of mass, 

damping, and stiffness matrices are obtained as follows: 

(2-26) ���� = � ����������
����

(2-27) ���� = � ��������������
����

,

(2-28) ���� = � ��������������
����

(2-29) ���� = � ������������
����

��

(2-30) ���� = − � ����������
����

��

For isotropic materials �� = �� = �, therefore ���� is obtained as follows: 

(2-31) ���� = � ������������
����

Matrices ����, �S�, ����, ����, ���� and vectors ���� and ���� are derived as follows: 

(2-32) ���� = ��1 ⋯ �4 Φ1 ⋯ Φ4 Ψ�� Ψ�� Ψ�� Ψ���
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�S� =

��� ⋯ �� 0 ⋯ � Φ1 ⋯ Φ4 0 ⋯ 0 Ψ�� ⋯ Ψ�� 0 ⋯ 0
0 ⋯ 0 �� ⋯ �� 0 ⋯ 0 Φ1 ⋯ Φ4 0 ⋯ 0 Ψ�� ⋯ Ψ��

�

(2-33)

(2-34)
���� = ��1,� ⋯ �4,� �1,� ⋯ �4,� Φ1,� ⋯ Φ4,� Φ1,� ⋯ Φ4,�

Ψ��,� ⋯ Ψ��,� Ψ��,� ⋯ Ψ��,��

(2-35)

���� = �
��,� ⋯ ��,� 0 ⋯ 0

0 ⋯ 0 ��,� ⋯ ��,�
��,� ⋯ ��,� ��,� ⋯ ��,�

Φ�,� ⋯ Φ�,� 0 … 0 Ψ��,� … Ψ��,� 0 … 0
0 ⋯ 0 Φ�,� … Φ�,� 0 … 0 Ψ��,� … Ψ��,�

Φ�,� ⋯ Φ�,� Φ�,� … Φ�,� Ψ��,� … Ψ��,� Ψ��,� … Ψ��,�

�

(2-36) ���� = ���,� ��,� ��,� ��,� Φ�,� Φ�,� Φ�,� Φ�,� Ψ��,� ⋯ Ψ��,�
��,� ��,� ��,� ��,� Φ�,� Φ�,� Φ�,� Φ�,� Ψ��,� ⋯ Ψ��,�

�

(2-37) ���� = ���
��

�, ���� = ���
�

��
��

For plane strain state matrix ��� is defined as follows: 

(2-38) ��� = �
�1 + ���1 − 2�� �

1 − � � 0
� 1 − � 0
0 0 �1 − 2�� 2�

�

2.2. Time integration 

Maybe the most widely used family of direct methods for solving semi discrete equation of 

motion is the Newmark family which consists of the following equations [25]: 

(2-39) ����∆� ���� + ����∆� ���� + ����∆���� = �������

(2-40) �∆���� = �∆�� + ∆��∆� ���� + ∆���1/2 − ���∆� �� + ∆����∆� ����
(2-41) �∆� ���� = �∆� �� + ∆��1 − ���∆� �� + ∆���∆� ����

The Newmark family contains many well-known and wide used methods. The average 

acceleration method is one of them for structural dynamics applications which is unconditionally 

stable. In this method, � and � are equal to 1/2 and 1/4 respectively. We will choose the mean 

acceleration scheme, which is unconditionally stable, since for the partition of unity method with an 

explicit Newmark-type scheme, the stable time step of the enriched problem is a small fraction of 

the stable time step of the problem with no enriched shape function [26]. 
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3. Interaction integral and SIF computations 
In this section, the interaction integral is formulated by superimposing the actual and auxiliary 

fields on the path independent J-integral [27]. In this work, the non-equilibrium formulation [28] is 

used in conjunction with XFEM to determine M-integral for arbitrarily oriented cracks in FGMs 

under thermomechanical loading and also computation of SIFs is explained in conjunction with the 

M-integral. 

Now, we consider two independent admissible fields which are the actual (�, �, �) and auxiliary 

(����, � ���, ����) fields. The J -integral of the superimposed fields (actual and auxiliary) can be 

written as follows: 

(3-1) 

�� = � ������ + ���
�������,� + ��,�

���� − 1 2� ���� + ���
��������

� + ���
�������

�∗

− 1 2� ���� � + �� �������� � + �� ���������q,�

+ �����,� + ���,�
�������,� + ��,�

���� + ���� + ���
�������,�� + ��,��

����

− 1 2� ���� + ���
��������,�

� + ���,�
���� − 1 2� ����,� + ���,�

��������
� + ���

����

− ���� � + �� �������� �,� + �� �,�
���� − 1 2� �,���� � + �� �������� � + �� ������q���

Where q is a weight function varying from unity at the crack tip to zero on boundary of domain 

�∗ �28�. Eq. (3-1) is decomposed into 

(3-2) �� = � + ���� + ��

Where � and ���� are given respectively by Eqs. (3-3) and (3-4). 

(3-3) 
� = � �������,� − 1 2� ������

���� − 1 2� ��� ��� �����q,�
�∗

+����,���,� + �����,�� − 1 2� ������,�
� − 1 2� ���,����

� − ��� ��� �,� − 1 2� �,��� ��� ��q���

(3-4) 

���� = � �����
�����,�

��� − 1 2� ���
������

������ − 1 2� ��� ������ ��������q,�
�∗

+����,�
�����,�

��� + ���
�����,��

��� − 1 2� ���
������,�

��� − 1 2� ���,�
������

��� − ��� ������ �,�
���

− 1 2� �,��� ������ �����q���
The resulting M-integral is given by  

(3-5) 

�� = � �������,�
��� + ���

�����,� − 1 2� ������
������ − 1 2� ���

������
���� − ��� ��� ��������q,�

�∗

+ ����,���,�
��� + ���,�

�����,� + �����,��
��� + ���

�����,�� − 1 2� ������,�
���

− 1 2� ���
������,�

� − 1 2� ���,����
��� − 1 2� ���,�

������
� − ��� ��� �,�

��� − ��� ������ �,�

− �,��� ��� �����q���
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Since the actual fields employ the quantities obtained from numerical simulation, the 

equilibrium and compatibility condition are satisfied. For the auxiliary fields, the equilibrium 

condition is not satisfied [28], i.e., ���,�
��� ≠ 0. While the relation between strain and displacement is 

compatible, i.e., ���
��� = 0.5���,�

��� + ��,�
���� and �����,��

��� = ������,�
���. The auxiliary stress field is 

defined as follows: 

(3-6) ���
��� = �����������

���

Notice that the auxiliary fields are chosen as asymptotic fields for homogeneous materials. 

Auxiliary fields, used in this paper, are based on Williams' solution [29] for stationary cracks and 

Swenson and Ingraffea [30] for moving cracks. The resulting interaction integral (��) becomes 

(3-7) 

�� = � �������,�
��� + ���

�����,� − ������
������ − ��� ��� ��������q,�

�∗

+ �������,�
��� + ���,�

�����,� + ���
�����,�� + ��,����� − ������,����

����
����

− ��� ��� �,�
��� − ��� ������ �,� − �,��� ��� �����q���

Since the Numerical computation of displacements, strains, stresses, etc., is based on the global 

coordinate system, first the M-integral is evaluated in the global (��������) and then transformed 

into the local coordinate system (�������). The global M-integral quantities are evaluated by  

(3-8) 

����������� = � �������,�
��� + ���

�����,� − ������
������ − ��� ��� ��������

�q
����∗

+ �������,�
��� + ���,�

�����,� + ���
�����,�� + ��,����� − ������,����

����
����

− ��� ��� �,�
��� − ��� ������ �,� − �,��� ��� �����q� �� � = 1,2

Where �� denotes the global coordinate system. The local M-integral quantity is given as [28].  

(3-9) ������� = ��������������� + ���������������
Where � is the angle between local and global Cartesian coordinate systems on crack tip. The 

relation between M-integral and SIFs for stationary crack in plane strain state is as follows: 

(3-10) ������� = 2�1 − ����
� ������

��� + ������
���� �����

Also, for moving crack ������� can be obtained from Eq. (3-11) [8]. 

(3-11) ������� = 2�1 − ����
� ������� �����

��� + ����� �������
���� �����

Where ���� and ���� denote Young’s modulus and Poisson’s ratio at crack tip respectively and ��  is 

crack velocity. �� are the universal functions (see [8]). Consequently, �� and ��� are calculated by 

choosing ��
��� = 1, ���

��� = 0 and ��
��� = 0, ���

��� = 1, respectively. The equivalent dynamic 

stress intensity factor ��� is defined by Eq. (3-12) [8]: 
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(3-12) ��� = ��������� 2� � − 1.5��������� 2� ������

Where �� is the direction in which the crack will propagate from its current tip, and will be 

obtained using the maximum hoop stress criteria [8]. 

(3-13) �� = 2arctan�0.25��� ���� − ������������� ���� �� + 8��.��� , − � < �� < �

In dynamic fracture mechanics, the initiation of growth and continued propagation of a crack 

depend on the equivalent stress intensity factor ��� relative to the material critical stress intensity 

factor, ���. While ��� < ���, the crack tip remains stationary. If ��� ≥ ��� the crack tip will be 

move. In this paper, we use an algorithm similar to algorithm presented in reference [26] to detect 

crack propagation phenomenon.  

 

4. Modeling of functionally graded layer  
The material properties of the functionally graded layer must be described across the layer 

thickness. In the present analysis, we assume that the material gradation is along the x direction and 

the volume fraction of inclusion follows a simple power function,  

(4-1) ����� = �� �� ��

Where �� is the volume fraction of inclusion and � is the power exponent determining the volume 

fraction profiles. 

We assume that the functionally graded layer is made of metal-phase and ceramic-phase. In this 

study, we use micromechanical models for conventional composites given by Hatta and Taya [31] 

and Mori and Tanaka [32] to calculate the properties of functionally graded ceramics (FGCs). Also, 

the fracture toughness of the two-phase FGC composite needs to be determined. Here we adopt Jin 

and Batra's rule of mixtures formula for a two phase FGC composite [33]. 

(4-2) ������ = ����������
� �� + ���������

� ����/�

To incorporate these relations into the XFE model, first the value of each material property is 

calculated at each individual node based on micromechanical models. Then, material properties at 

each Gaussian integration point can be interpolated from the nodal material properties of the 

element using isoparametric shape functions which are the same for spatial coordinates (x, y). Thus, 

material properties such as elastic modulus (�), Poisson’s ratio (�), and mass density (�) at Gauss 

points can be interpolated using shape functions from nodal points as [34] 

(4-3) � = � ����

�

���
, � = � ����

�

���
, � = � ����

�

���
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5. Numerical examples 
In This section, first we present tree numerical examples which examine the accuracy and precision 

of presented method in this paper. Then we consider the effect of volume fraction profile of FGMs 

and loading condition on crack tip SIFs in next example. In the last example, we study the crack 

propagation phenomenon in a FG layer under thermal and mechanical shocks. The plane strain state 

is assumed in all numerical examples. 

 

5.1. First example  

We consider an elastic two dimensional isotropic and homogeneous layer with an edge crack (fig. 

2). The initial temperature T0 is chosen to be 400◦K. The layer is rapidly cooled by conduction at its 

left surface to T1, which is equal to 350◦K in this study. All other sides are assumed to be thermally 

insulated. In this example, we neglect the coupling term in the energy equation as Lee and Sim [35] 

did in their analytical solution and the attained SIFs are compared with their analytical solution.  

 

Fig. 2. Geometry and boundary condition of layer. 

 

The problem dimensions are L = 0.001m, W = 0.002m and a = 0.00005m (fig. 2). The material 

properties are � = 5600 kg/m3, � = 117 GPa, � = 0.333, � = 7.118×10-6 K-1, ct = 615.6 J/kgK and  

� = 2.036 W/mK. A 51× 101 four node rectangular element mesh is used and the selected time step 

is ∆� = 10-4 s. A domain of 0.0001m×0.0001m was used to calculate the interaction integral and 

SIF. The Analytical and numerical dimensionless SIF (���) is plotted versus the logarithm of 

dimensionless time (��) in Fig. 3, where good accordance is observed. In this example we define 

��� and �� which follow from Eqs. (5-1) and (5-2) [35]. 

(5-1) ��� = ���1 − �� ������ − �����.���
(5-2) �� = �� ������

T1

L

W

T0

x

y

Vi(x)

a
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Fig. 3. Normalized SIF versus logarithm of Normalized time for first numerical example.

5.2. Second example  

An FG two-dimensional layer with a horizontal edge crack is considered, as shown in Fig. 2. The 

layer is initially at a constant temperature. Without loss of generality, the initial temperature can be 

assumed to be 200◦K. The layer is suddenly cooled down by conduction at its left surface to 

temperature T1, which is equal to 190◦K. the initial and boundary conditions for the temperature 

field are: 

(5-3) � = 200°� �� � = 0, � = 190°� �� � = 0, � = 200°� �� � = �

We suppose that the heat transfer coefficient on the surfaces of the FGM strip is infinite which is 

an idealized thermal shock boundary condition. The problem dimensions are L = 0.001m and  

W = 0.002m (fig. 2). Two crack lengths are considered in this example, a = 0.0001m and  

a = 0.0003m. The mesh consists of 61 × 121 four node rectangular element in this example and the 

selected time step is ∆� =2×10-4 s. A square domain with dimensions 2a×2a was used to calculate 

the interaction integral and SIF. 

Table 1 lists the properties of the constituent materials, i.e., Al2O3 and Si3N4. This study 

assumes that the volume fraction of Si3N4 (phase i) follows a simple power function (Eq. (4-1)). 

The material gradation in the x direction is considered. 
 

Table 1. Material properties of Al2O3 and Si3N4 [21]. 

 Young’s 

modulus 

(GPa) 

Poisson’s 

ratio 

CTE 

(10−6/K) 

Thermal 

conductivity 

(W/m-K) 

Mass 

density 

(Kg/m3)

Specific 

heat 

(J/Kg-K) 

Fracture 

toughness 

(MPa-m1/2)

Al2O3 320 0.25 8 20 3800 900 4 

Si3N4 320 0.25 3 35 3200 700 5 

0

0.07

0.14

0.21

-4 -3 -2 -1

KID

log(tD)

analytical, Lee & Sim

Present



14 
 

The SIFs for this two dimensional thermoelasticity problem are compared with those obtained 

by Jin and Paulino [12] in fig. 4 which shows a good agreement between both results. Fig. 4 

illustrate that under thermal shock, increasing crack length will decrease SIF. The dimensionless 

thermal stress intensity factor at the crack tip and dimensionless time can be computed as follows 

[12]: 

(5-4) ��� = ���1 − �� ������� − ��������.���
(5-5) �� = ��� ��������

Fig. 4. Normalized SIF versus Normalized time for second numerical example, a) a/L = 0.1, b) a/L =0.3. 

 

5.3. Third example  

An elastic two-dimensional layer with an edge crack is considered in this example. A schematic 

of the problem is shown in Fig. 5. A uniform traction of magnitude �� = 63750 Pa is applied at 

time � = 0 as a step function to the top and bottom edges. The layer dimensions are 10m×4m, and 

the initial crack length is a = 5m. The analytical solution given by Freund [36] is for an infinite 

layer. Since the specimen is finite, we stopped the simulation before the reflected wave from the 

edge reaches the crack tip at � = 0.001 �. The material properties are � = 7833kg/m�,

� = 200GPa and � = 0.3. A 201×81 quadrilateral mesh was used. 

 

Fig. 5. Internally isotropic cracked layer under mechanical shock. 
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We use a domain of 0.5m×0.5m to calculate the interaction integral and SIF. The SIF values for 

this problem are obtained and compared with the analytical solution in fig. 6, which shows a good 

agreement between both results. The results are quite smooth and oscillate about the analytic 

solution. These unavoidable oscillations are also observed in references [37], [5], [38], [19] and [20] 

for the standard XFEM. These oscillations are the characteristic of the solution of a shock 

propagation problem by the FE discretization in the spatial domain and also by the Newmark 

method in the time domain [20]. 

 

Fig. 6. Comparison variations of numerical and analytical SIF with time for the third numerical example. 

 

5.4. Fourth Example 

An elastic two-dimensional FG layer with an edge crack (Fig. 7) is considered in this example. 

A tension of magnitude �� = 10 MPa and cooling thermal shocks of magnitude � = −10 and 

� = −20 is applied at time � = 0 as a step function to the top and bottom edges. The layer 

dimensions are L = 0.1m and W = 0.02m, and the initial crack length is a = 0.05m. The calculations 

are carried out to the point � = 10��, before the reflected wave from the edge reaches the crack tip. 

Initial temperature T0 is chosen to be 300◦K. 
 

Fig. 7. Internally FG cracked layer under mechanical shock. 
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In these numerical calculations, we consider a Ti-6Al-4V and ZrO2 FGM. The properties of the 

constituent materials are presented in table 2. The material gradation in the x direction is considered 

and the volume fraction of ZrO2 follows than Eq. (4-1). A mesh with 81× 201 four node rectangular 

element is used and the selected time step is ∆� =10-7 s. A domain of dimensions 0.005m×0.005m 

was used to calculate the SIF. 

 
Table 2. Material properties of Ti-6Al-4V and ZrO2 [20] 

 Young’s 

modulus 

(GPa) 

Poisson’s 

ratio 

CTE 

(10−6/K) 

Thermal 

conductivity 

(W/m-K) 

Mass density 

(Kg/m3)

Specific heat 

(J/Kg-K) 

Fracture 

toughness 

(MPa-m1/2)

Ti-6Al-4V 66.2 0.321 10.3 18.1 4410 808.3 60 

ZrO2 117 0.333 7.11 2.036 5600 615.6 4 

To study the effect of the material gradation, the coupled thermoelasticity problem with tree 

different values of p is analyzed (i.e. p = 0.2, p = 1 and p = 5). The time variations of the mode-I 

thermal dynamic SIF are shown in Fig. 8. Figures 8(a) and 8(b) demonstrate that SIF due to 

thermomechanical shocks is superposition of SIFs produced with thermal and mechanical shocks 

separately. Also figs. 8(c) and 8(d) show that increasing the material gradient parameter, p, will 

increase SIF regardless of loading conditions. We can see from fig. 8 that the curve related to 

thermal shocks is smoother than other curves. 

 

5.5. Fifth Example 

In this example, we study crack propagation phenomenon in a FG layer with a horizontal edge 

crack under thermal and mechanical shocks. Dimensions, properties, mesh and boundary conditions 

of considered layer are identical to the previous example. Initial temperature T0 is chosen to be 

500◦K. A cooling thermal shock equal to -100 degree (θ = -100) and a mechanical shock of 

magnitude �� = 200 MPa are applied to upper and bottom surface of layer. The total simulation 

time is 60��.

The crack tip propagation velocity for FG layers with p = 0.2 and p = 5 under thermomechanical 

shocks is illustrated in fig. 9. It is obtained from fig. 9 that crack propagation initiation time is 

dependent to loading condition and volume fraction profile of FG layer. 
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Fig. 8. Stress intensity factor versus time for the fourth numerical example in various loading conditions. a) p = 1, 

 b) p = 5, c) mechanical and thermomechanical shock, d) thermal and thermomechanical shock. 

Crack growth initiation under mechanical shocks happens earlier than crack growth initiation 

under thermal shocks. Also increasing material gradient parameter, p, will decrease crack 

propagation initiation time and will increasing crack propagation velocity. Figure 9 shows that the 

velocity curve related to p = 5 almost lie over curve related to p = 0.2.  

Figures 10 and 11 illustrate crack propagation path, von Mises stress contours and deformed 

mesh for FG layers with p = 0.2 and p = 5 respectively, under thermomechanical shocks at times 

10µs, 20µs and 60µs. For more clarification, displacements are multiplied by 5 in plotting deformed 
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meshes. Figures 10 and 11 show that crack propagates in straight line until about  

t = 40µs, regardless of loading conditions and material gradient parameter (p). After this time crack 

deviates to upward. Belytschko et al. [5] for homogeneous materials predicted that after crack 

propagation in straight line, crack branching may be occur but our written code doesn’t have ability 

to detect crack branching phenomenon. Comparison of figs. 10 and 11 confirms that increasing p, 

will increase crack propagation velocity and crack length. Also deviation of crack path will increase 

with increasing p. 

 

(a)  

(b)  

(c)  

Fig. 9. Crack tip velocity for FG layers under a) Mechanical shock, b) Thermal shock, c) Thermomechanical shock. 
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(a) t = 10µs

(b) t = 40µs

(c) t = 60µs

Fig. 10. Von Mises stress contours and Deformed mesh of FG layer with p =0.2 under thermomechanical shock at 

various times. Displacements in deformed mesh became 5 times larger for more clarification. 

 

6. Conclusions 
In this study, Classical coupled thermoelastic equations were solved using XFE and Newmark 

Methods in FGMs. The most general form of Interaction Integral were developed to evaluate 

Dynamical SIFs for both homogenous and FG materials. Also, the crack propagation phenomenon 

is considered in FG layers under thermomechanical shock. Some numerical examples are 

implemented and good agreements and accuracies are observed. The following results were 

obtained for a FG layer composed of Ti-6Al-4V and ZrO2 where the crack is placed in ZrO2

enriched side: 

1- Under thermomachanical shocks in mode I, increasing the material gradient parameter, p, in a 

FG Layer will increase SIF (KI). 

2- Crack growth initiation under mechanical shocks happens earlier than crack growth initiation 

under thermal shocks in mode I. 

×1E8 

×1E9

×1E9
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3- Increasing material gradient parameter (p), will decrease crack propagation initiation time. 

4- Under thermomechanical shocks in mode I, increasing the material gradient parameter (p), 

will increase crack propagation velocity. 

 

(a) p = 5, t = 10µs

(b) p = 5, t = 40µs

(c) p = 5, t = 60µs

Fig. 11. Von Mises stress contours and Deformed mesh of FG layer with p =5 under thermomechanical shock at various 

times. Displacements in deformed mesh became 5 times larger for more clarification. 
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