The possibility of applying of acoustic methods for the monitoring of sol-gel processes
References
C.J. Brinker and G.W. Schere, Sol-gel science, Academic Press, New York 1990.
Chemical processing of ceramics, B.J. Lee, E.J.A. Pope [Eds.], New York 1994.
D. Stauffer, Gelierungstheorie — Vers¨aumte Zusammenarbeit von Physik und Chemie, Ber. Bunsenges. Phys. Chem., 102, 1672–1678 (1998).
Farady Discussions-Gels, 101 (1995).
J. Ranachowski and T. Łas, Non-destructive testing of some dielectric solids materials [in Polish], [in:] The Present Problems of the High Voltage Technology, PWN, Warszawa 1965, 365–397.
J. Ferguson and Kembłowski, Applied rheology of fluids, MARCUS, Łódz 1995.
R. De Boer and W. Ehlery, A historical review of the formulation of porous medies theories, Acta Mech., 74, 1–8 (1998).
M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid, J. Acoust. Soc. Am., 28, 168–191 (1956).
M.A. Biot and D.G. Willis, The elastic coefficients of the theory of consolidation, J. Appl. Mech., 24, 594–601 (1957).
W. Phillipoff, Relaxations in polymer solutions. Liquids and gels, Physical Acoustics, P. Mason [Ed.], New York, Vol. II, part B (1965), 1–90.
R.S. Marvin and H. Oeser, Distribution of relaxation times, J. Research Nat. Bur. Standards, B66, 171–177 (1962).
J. Lewandowski, Acoustic and effective material parameters of heterogeneous viscoelastic bodies, Acta Mech., 57, 143–158 (1985).
J. Lewandowski, Acoustic and dynamic properties of two-phase media with non-spherical inclusions, Ultrasonics, 33, 61–68 (1995).
J.J. McCoy, A theory of stress wave propagation through inhomogeneous solids, J. Appl. Mech., 44, 462–471 (1977).
I. Malecki and J. Ranachowski, The acoustic cross-section method for evaluation of porous material parameters, Bull. Pol. Ac. Sci., Ser. Tech. Sci., 45, 43–56 (1997).
P.R. Williams and R.L. Williams, Rheometrical aspects of the viscoelastic dispersion of shear waves in gel-like mechanical network, J. Non-Newtonian Fluid Mech., 78, 203–225 (1998).