10.24425/aoa.2024.148820
Implementation of a Cost-Effective, Accurate Photoacoustic Imaging System Based on High-Power LED Illumination and FPGA-Based Circuitry
References
Agrawal S., Kuniyil Ajith Singh M., Johnstonbaugh K., Han D.C., Pameijer C.R., Kothapalli S.-R. (2021), Photoacoustic imaging of human vasculature using LED versus laser illumination: A comparison study on tissue phantoms and in vivo humans, Sensors, 21(2): 424, https://doi.org/10.3390/s21020424.
Ahangar Darband M., Najafi Aghdam E., Gharibi A. (2023a), Numerical simulation of breast cancer in the early diagnosis with actual dimension and characteristics using photoacoustic tomography, Archives of Acoustics, 48(1): 25–38, https://doi.org/10.24425/aoa.2023.144263.
Ahangar Darband M., Qorbani O., Najafi Aghdam E. (2023b), Modified algebraic reconstruction technique based on circular scanning geometry to improve processing time in photoacoustic tomography, Microwave and Optical Technology Letters, 65(8): 2456–2463, https://doi.org/10.1002/mop.33714.
Allen T.J., Beard P.C. (2016), High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics, Biomedical Optics Express, 7(4): 1260–1270, https://doi.org/10.1364/BOE.7.001260.
American Cancer Society (2019), Breast cancer facts & figures 2019–2020, Atlanta: Cancer Society, Inc.
Fatima A. et al. (2019), Review of cost reduction methods in photoacoustic computed tomography, Photoacoustics, 15: 100137, https://doi.org/10.1016/j.pacs.2019.100137.
Gao Z., Shen Y., Jiang D., Liu F., Gao F., Gao F. (2022), FPGA acceleration of image reconstruction for real-time photoacoustic tomography, ArXiv preprint, https://doi.org/10.48550/arXiv.2204.14084.
Hansen R.S. (2011), Using high-power light emitting diodes for photoacoustic imaging, [in:] Medical Imaging 2011: Ultrasonic Imaging, Tomography, and Therapy, 7968: 83–88, https://doi.org/10.1117/12.876516.
Harder I., Lano M., Lindlein N., Schwider J. (2004), Homogenization and beam shaping with microlens arrays, [in:] Photon Management, 5456: 99–107, https://doi.org/10.1117/12.549015.
Jo J., Xu G., Schiopu E., Chamberland D., Gandikota G., Wang X. (2020), Imaging of enthesitis by an LED-based photoacoustic system, Journal of Biomedical Optics, 25(12): 126005, https://doi.org/10.1117/1.JBO.25.12.126005.
Joseph Francis K., Boink Y.E., Dantuma M., Ajith Singh M.K., Manohar S., Steenbergen W. (2020), Tomographic imaging with an ultrasound and LED-based photoacoustic system, Biomedical Optics Express, 11(4): 2152–2165, https://doi.org/10.1364/BOE.384548.
Khosroshahi M.E., Mandelis A. (2015), Combined photoacoustic ultrasound and beam deflection signal monitoring of gold nanoparticle agglomerate concentrations in tissue phantoms using a pulsed Nd:YAG laser, International Journal of Thermophysics, 36: 880–890, doi: https://doi.org/10.1007/s10765-014-1773-3.
Kuriakose M., Nguyen C.D., Kuniyil Ajith Singh M., Mallidi S. (2020), Optimizing irradiation geometry in LED-based photoacoustic imaging with 3D printed flexible and modular light delivery system, Sensors, 20(13): 3789, https://doi.org/10.3390/s20133789.
Linde B.B.J., Sikorska A., Śliwiński A., Żwirbla W. (2014), Molecular association and relaxation phenomena in water solutions of organic liquids examined by photoacoustic and ultrasonic methods, Archives of Acoustics, 31(4(S)): 143–152.
Liu X., Kalva S.K., Lafci B., Nozdriukhin D., Dean-Ben X.L., Razansky D. (2023), Full-view LED-based optoacoustic tomography, Photoacoustics, 31: 100521, https://doi.org/10.1016/j.pacs.2023.100521.
Paltauf G., Nuster R., Frenz M. (2020), Progress in biomedical photoacoustic imaging instrumentation toward clinical application, Journal of Applied Physics, 128(18): 180907, https://doi.org/10.1063/5.0028190.
Ponikwicki N. et al. (2019), Photoacoustic method as a tool for analysis of concentration-dependent thermal effusivity in a mixture of methyl alcohol and water, Archives of Acoustics, 44(1): 153–160, https://doi.org/10.24425/aoa.2019.126361.
Van Heumen S., Riksen J.J., Singh M.K.A., Van Soest G., Vasilic D. (2023), LED-based photoacoustic imaging for preoperative visualization of lymphatic vessels in patients with secondary limb lymphedema, Photoacoustics, 29: 100446, https://doi.org/10.1016/j.pacs.2022.100446.
Tam A.C. (1986), Applications of photoacoustic sensing techniques, Reviews of Modern Physics, 58(2): 381, https://doi.org/10.1103/RevModPhys.58.381.
Upputuri, P.K., Pramanik M. (2017), Recent advances toward preclinical and clinical translation of photoacoustic tomography: A review, Journal of Biomedical Optics, 22(4): 041006, https://doi.org/10.1117/1.JBO.22.4.041006.
Wang L.V. [Ed.] (2017), Photoacoustic Imaging and Spectroscopy, CRC Press.
Wang L.V. (2008), Prospects of photoacoustic tomography, Medical Physics, 35(12): 5758–5767, https://doi.org/10.1118/1.3013698.
Xavierselvan M., Mallidi S. (2020), LED-based functional photoacoustics – Portable and affordable solution for preclinical cancer imaging [in:] LED-Based Photoacoustic Imaging: From Bench to Bedside, pp. 303–319, https://doi.org/10.1007/978-981-15-3984-8_12.
Xu M., Wang L.V. (2006), Photoacoustic imaging in biomedicine, Review of Scientific Instruments, 77(4): 041101, https://doi.org/10.1063/1.2195024.
Zhu Y. et al. (2020), Towards clinical translation of LED-based photoacoustic imaging: A review, Sensors, 20(9): 2484, https://doi.org/10.3390/s20092484.
Zhou Q., Ji X., Xing D. (2011), Full-field 3D photoacoustic imaging based on plane transducer array and spatial phase-controlled algorithm, Medical Physics, 38(3): 1561–1566, https://doi.org/10.1118/1.3555036.
DOI: 10.24425/aoa.2024.148820