10.24425/aoa.2025.153664
Structural Parametric Study of a Piezoelectric Energy Harvester for a Specific Excitation Frequency of an Electric Motor, Considering Fatigue Life
References
Abdelkefi A., Barsallo N., Tang L., Yang Y., Hajj M.R. (2014), Modeling, validation, and performance of low-frequency piezoelectric energy harvesters, Journal of Intelligent Material Systems and Structures, 25(12): 1429–1444, https://doi.org/10.1177/1045389X13507638.
Abdul Satar M.H., Murad A.F., Ahmad Mazlan A.Z. (2022), Characterization of piezoelectric patch material with hysteresis, saturation, creep, and vibration nonlinearity effects and its application to the active vibration suppression for cantilever beam, Journal of Vibration and Control, 28(3–4): 476–489, https://doi.org/10.1177/1077546320980571.
Augustyn E., Kozień M.S., Prącik M. (2014), FEM analysis of active reduction of torsional vibrations of clamped-free beam by piezoelectric elements for separated modes, Archives of Acoustics, 39(4): 639–644, https://doi.org/10.2478/aoa-2014-0069.
Avvari P.V., Yang Y., Soh C.K. (2017), Long-term fatigue behavior of a cantilever piezoelectric energy harvester, Journal of Intelligent Material Systems and Structures, 28(9): 1188–1210, https://doi.org/10.1177/1045389X16667552.
Bao B., Wang Q., Wu N., Zhou S. (2021), Handheld piezoelectric energy harvesting structure: Design, dynamic analysis, and experimental validation, Measurement, 174: 109011, https://doi.org/10.1016/j.measurement.2021.109011.
Chen C., Sharafi A., Sun J.Q. (2020), A high density piezoelectric energy harvesting device from highway traffic – Design analysis and laboratory validation, Applied Energy, 269: 115073, https://doi.org/10.1016/j.apenergy.2020.115073.
Feng Y., Liu W., Gao M., Chen H., Lu Q. (2023), Analysis of electromechanical response and fatigue life of piezoelectric cantilever beam [in Chinese], Failure Analysis and Prevention, 18(3): 184–190, http://doi.org/10.3969/j.issn.1673-6214.2023.03.007.
Gaomeng (n.d.), Shanghai GOM Testing & Technical Co., Ltd., https://www.gaomengce.com (access: 1.05.2024).
Li T., Lee P.S. (2022), Piezoelectric energy harvesting technology: From materials, structures, to applications, Small Structures, 3(3): 2100128, https://doi.org/10.1002/sstr.202100128.
Lu Q. (2018), Structure design and electro-mechanical performance analysis of vibration piezoelectric composite energy harvester, Ph.D. Thesis, Harbin Institute of Technology.
Niasar E.H.A., Dahmardeh M., Googarchin H.S. (2020), Optimization of a piezoelectric energy harvester considering electrical fatigue, Journal of Intelligent Material Systems and Structures, 31(12): 1443–1454, https://doi.org/10.1177/1045389X20923086.
Panda S. et al. (2022), Piezoelectric energy harvesting systems for biomedical applications, Nano Energy, 100: 107514, https://doi.org/10.1016/j.nanoen.2022.107514.
Rafique S., Bonello P. (2010), Experimental validation of a distributed parameter piezoelectric bimorph cantilever energy harvester, Smart Materials and Structures, 19(9): 094008, https://doi.org/10.1088/0964-1726/19/9/094008.
Roundy S. et al. (2005), Improving power output for vibration-based energy scavengers, IEEE Pervasive Computing, 4(1): 28–36, https://doi.org/10.1109/MPRV.2005.14.
Salazar R., Larkin K., Abdelkefi A. (2021), Piezoelectric property degradation and cracking impacts on the lifetime performance of energy harvesters, Mechanical Systems and Signal Processing, 156: 107697, https://doi.org/10.1016/j.ymssp.2021.107697.
Sezer N., Koc M. (2021), A comprehensive review on the state-of-the-art of piezoelectric energy harvesting, Nano Energy, 80: 105567, https://doi.org/10.1016/j.nanoen.2020.105567.
Shi Y., Hallett S.R., Zhu M. (2017), Energy harvesting behaviour for aircraft composites structures using macro-fibre composite: Part I – Integration and experiment, Composite Structures, 160: 1279–1286, https://doi.org/10.1016/j.compstruct.2016.11.037.
Wang J., Qin X., Liu Z., Ding G., Cai G. (2021), Experimental study on fatigue degradation of piezoelectric energy harvesters under equivalent traffic load conditions, International Journal of Fatigue, 150: 106320, https://doi.org/10.1016/j.ijfatigue.2021.106320.
Wang S.L., Song J., Zhao X.Y. (2019), Research on energy recovery device of electric vehicle seat based on piezoelectric effect, [in:] 2019 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA), https://doi.org/10.1109/SPAWDA.2019.8681810.
Wu X. (2013), The fatigue analysis and experimental research of piezoelectric pump with single chip vibrator, Master Thesis, University of Jilin.
Zhang M., Meng Q., Wang H. (2014), Fatigue analysis for cantilever piezoelectric vibration energy harvester.
Zhang Q., Liu Z., Jiang X., Peng Y., Zhu C., Li Z. (2022), Experimental investigation on performance improvement of cantilever piezoelectric energy harvesters via escapement mechanism from extremely low-frequency excitations, Sustainable Energy Technologies and Assessments, 53(Part B): 102591, https://doi.org/10.1016/j.seta.2022.102591.
Zhu M., Worthington E., Tiwari A. (2010), Design study of piezoelectric energy-harvesting devices for generation of higher electrical power using a coupled piezoelectric-circuit finite element method, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57(2): 427–437, https://doi.org/10.1109/TUFFC.2010.1423.
DOI: 10.24425/aoa.2025.153664